T₁-mapping methods
First, we initialize a few empty vectors which will be filled with information about each T₁-mapping method:
T1_literature = Float64[]
T1_functions = []
incl_fit = Bool[]
seq_name = String[]
seq_type = Symbol[]
Next, we define the simulations of each pulse sequence as a function and push this function and auxiliary information for plotting to the respective vector.
IR: Stanisz et al.
Inversion-recovery method described by Stanisz et al. (2005). The following function takes qMT parameters as an input, simulates the signal, performs a mono-exponential T₁ fit as described in the publication, and returns the T₁ estimate. Sequence details are extracted from the publications and complemented with information kindly provided by the authors, as well as educated guesses where the corresponding information was not accessible. The latter two sources are indicated by comments in the functions.
function calculate_T1_IRStanisz(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRF_inv = 10e-6 # s; 10us - 20us according to private conversations
TRF_exc = TRF_inv # guessed, but has a negligible effect
TI = exp.(range(log(1e-3), log(32), 35)) # s
TD = similar(TI)
TD .= 20 # s
# simulate signal with an MT model
u_inv = RF_pulse_propagator(π / TRF_inv, B1, ω0, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_exc = RF_pulse_propagator(π / 2 / TRF_exc, B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_rti = [exp(hamiltonian_linear(0, B1, ω0, iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_rtd = [exp(hamiltonian_linear(0, B1, ω0, iTD - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTD ∈ TD]
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_rti[i] * u_inv * u_rtd[i]
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T₁ (in s)
model3(t, p) = p[1] .- p[2] .* exp.(-p[3] * t)
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
We add the T₁ estimate from Stanisz et al. (2005), the function, and some auxiliary data to the above-initialized vectors:
push!(T1_literature, 1.084) # ± 0.045s in WM
push!(T1_functions, calculate_T1_IRStanisz)
push!(seq_name, "IR Stanisz et al.")
push!(seq_type, :IR)
IR: Stikhov et al.
Inversion-recovery method described by Stikhov et al. (2015).
function calculate_T1_IRStikhov(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
nLobes = 3 # confirmed by authors
TRF_exc = 3.072e-3 # s; confirmed by authors
TRF_ref = 3e-3 # s; confirmed by authors
TI = [30e-3, 530e-3, 1.03, 1.53] # s
TR = 1.55 # s
TE = 11e-3 # s
# simulate signal with an MT model
# excitation block
u_exc = RF_pulse_propagator(sinc_pulse(-π / 2, TRF_exc; nLobes=nLobes), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model; spoiler=true)
u_ref = RF_pulse_propagator(gauss_pulse(π, TRF_ref), B1, ω0, TRF_ref, m0s, R1f, R2f, Rx, R1s, T2s, MT_model; spoiler=false)
u_te2 = exp(hamiltonian_linear(0, B1, ω0, (TE - TRF_exc - TRF_ref) / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_ref * u_te2 * u_exc
# adiabatic inversion pulse confirmed by the authors
ω1, _, φ, TRF_inv = sech_inversion_pulse() # 360 deg, defined by the intgral over the RF's real part.
u_inv = RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_rti = [exp(hamiltonian_linear(0, B1, ω0, iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_rtd = [exp(hamiltonian_linear(0, B1, ω0, TR - iTI - (TRF_inv + TRF_ref + TE) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_rti[i] * u_sp * u_inv * u_sp * u_rtd[i] * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .- p[2] .* exp.(-p[3] * t)
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 850e-3) # s; peak of histogram
push!(T1_functions, calculate_T1_IRStikhov)
push!(seq_name, "IR Stikhov et al.")
push!(seq_type, :IR)
IR: Preibisch et al.
Inversion-recovery method described by Preibisch et al. (2009).
function calculate_T1_IRPreibisch(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TI = [100, 200, 300, 400, 600, 800, 1000, 1200, 1600, 2000, 2600, 3200, 3800, 4400, 5000] .* 1e-3 # s
TD = 20 # s
TE = 27e-3 # s
# The adiabatic inversion pulse was identical to the one described in http://doi.org/10.1002/mrm.20552 (per private communications with Dr. Deichmann)
TRF_inv = 8.192e-3 # s
β = 4.5 # 1/s
μ = 5 # rad
ω₁ᵐᵃˣ=13.5*π/TRF_inv # rad/s
ω1_inv(t) = ω₁ᵐᵃˣ * sech(β * (2t / TRF_inv - 1)) # rad/s
φ_inv(t) = μ * log(sech(β * (2t / TRF_inv - 1))) # rad
# simulate signal with an MT model
u_inv = RF_pulse_propagator(ω1_inv, B1, φ_inv, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# The shape of the excitation pulse was kindly provided by Dr. Deichmann
TRF_exc = 2.5e-3 # s
_ω1_exc(t) = sinc(2 * abs(2t/TRF_exc-1)^0.88) * cos(π/2 * (2t/TRF_exc-1)) # rad/s
ω1_scale = π/2 / quadgk(_ω1_exc, 0, TRF_exc)[1]
ω1_exc(t) = _ω1_exc(t) * ω1_scale # rad/s
u_exc = RF_pulse_propagator(ω1_exc, B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te * u_exc
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_td = exp(hamiltonian_linear(0, B1, ω0, TD - TRF_inv / 2 - TE, m0s, R1f, R2f, Rx, R1s, 1))
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_ti[i] * u_sp * u_inv * u_sp * u_td * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
# Fixed κ per private communications with Dr. Deichmann
κ = 1.964
model2(t, p) = p[1] .* (1 .- κ .* exp.(-p[2] * t))
fit = curve_fit(model2, TI, s, [1, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 881e-3) # s; median of WM ROIs; mean is 0.882 s
push!(T1_functions, calculate_T1_IRPreibisch)
push!(seq_name, "IR Preibisch et al.")
push!(seq_type, :IR)
IR: Shin et al.
Inversion-recovery method described by Shin et al. (2009).
function calculate_T1_IRShin(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TI = exp.(range(log(34e-3), log(15), 10)) # s; Authors did not recall the TIs, but said they had at least 3–4 short times
TR = 30 # s
TRF_exc = 2.56e-3 # from Shin's memory
# simulate signal with an MT model
# EPI readout
u_exc = RF_pulse_propagator(sinc_pulse(16 / 180 * π, TRF_exc; nLobes=3), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# adiabatic inversion pulse
ω1, _, φ, TRF_inv = sech_inversion_pulse() # Shin confirmed "standard Siemens" adiabatic inversion pulse
u_inv = RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_rti = [exp(hamiltonian_linear(0, B1, ω0, iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_rtd = [exp(hamiltonian_linear(0, B1, ω0, TR - iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_rti[i] * u_sp * u_inv * u_sp * u_rtd[i] * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .- p[2] .* exp.(-p[3] * t)
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 0.943) # ± 0.057 s in WM
push!(T1_functions, calculate_T1_IRShin)
push!(seq_name, "IR Shin et al.")
push!(seq_type, :IR)
LL: Shin et al.
Look-Locker method described by Shin et al. (2009).
function calculate_T1_LLShin(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
Nslices = 28 # (inner loop)
iSlice = Nslices - 18 # guessed from cf. Fig. 6 and 7, the author suggested that the slices were acquired in ascending order
TI1 = 12e-3 # s; the author suggested < 12ms
TD = 10 + TI1 # s; time duration of data acquisition per IR period
TR = 0.4 # s
TR_slice = TR / Nslices
TI = (0:TR:TD-TR)
α_exc = 16 * π / 180 # rad
TRF_exc = 2.56e-3 # s; from the authors' memory
nLobes = 3
Δω0 = (nLobes + 1) * 2π / TRF_exc # rad/s
ω0slice = ((1:Nslices) .- iSlice) * Δω0
# simulate signal with an MT model
ω1, _, φ, TRF_inv = sech_inversion_pulse() # Shin confirmed "standard Siemens" adiabatic inversion pulse
u_inv = RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_exc = Vector{Matrix{Float64}}(undef, length(ω0slice))
Threads.@threads for is ∈ eachindex(ω0slice)
if is == iSlice
u_exc[is] = RF_pulse_propagator(sinc_pulse(α_exc, TRF_exc; nLobes=nLobes), B1, ω0slice[is] + ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
else # use Graham's model for off-resonant pulses for speed
u_exc[is] = exp(hamiltonian_linear(0, B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, 1))
u_exc[is][5, 5] *= exp(-π * quadgk(t -> sinc_pulse(α_exc, TRF_exc; nLobes=nLobes)(t)^2, 0, TRF_exc)[1] * MRIgeneralizedBloch.lineshape_superlorentzian(ω0slice[is] + ω0, T2s))
end
end
U = exp(hamiltonian_linear(0, B1, ω0, TI1 - TRF_inv / 2 - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
for _ ∈ TI, is ∈ eachindex(ω0slice)
U = u_exc[is] * u_sp * U
U = exp(hamiltonian_linear(0, B1, -ω0slice[is] + ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, 1)) * U # rewind phase
U = exp(hamiltonian_linear(0, B1, ω0, TR_slice - 2TRF_exc, m0s, R1f, R2f, Rx, R1s, 1)) * U
end
U = u_sp * u_inv * u_sp * U
m = steady_state(U)
s = similar(TI)
m = exp(hamiltonian_linear(0, B1, ω0, TI1 - TRF_inv / 2 - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1)) * m
for iTI ∈ eachindex(s), is ∈ eachindex(ω0slice)
m = u_exc[is] * u_sp * m
m = exp(hamiltonian_linear(0, B1, -ω0slice[is] + ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, 1)) * m # rewind phase
m = exp(hamiltonian_linear(0, B1, ω0, TR_slice - 2TRF_exc, m0s, R1f, R2f, Rx, R1s, 1)) * m
if is == iSlice
s[iTI] = m[1]
end
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .- p[2] .* exp.(-p[3] * t)
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
R1a_est = fit.param[end] + log(cos(α_exc)) / TR
return 1 / R1a_est
end
push!(T1_literature, 0.964) # ± 116s in WM
push!(T1_functions, calculate_T1_LLShin)
push!(seq_name, "LL Shin et al.")
push!(seq_type, :LL)
IR: Lu et al.
Inversion-recovery method described by Lu et al. (2005).
function calculate_T1_IRLu(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRF_exc = 1e-3 # s; 0.5-2 ms according to P Zijl
TI = [180, 630, 1170, 1830, 2610, 3450, 4320, 5220, 6120, 7010] .* 1e-3 # s
TD = 8 # s
TE = 42e-3 # s
# simulate signal with an MT model
# excitation block; GRASE RO w/ TSE factor 4
u_exc = RF_pulse_propagator(sinc_pulse(π / 2, TRF_exc; nLobes=3), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model; spoiler=true)
u_ref = RF_pulse_propagator(sinc_pulse(π, TRF_exc; nLobes=3), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model; spoiler=false)
u_te1 = exp(hamiltonian_linear(0, B1, ω0, TE / 4 - TRF_exc, m0s, R1f, R2f, Rx, R1s, 1))
u_te234 = exp(hamiltonian_linear(0, B1, ω0, TE / 4 - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te234 * u_ref * u_te234^2 * u_ref * u_te1 * u_exc # 2 refocusing pulses before the RO
# adiabatic inversion pulse
ω1, _, φ, TRF_inv = sech_inversion_pulse(ω₁ᵐᵃˣ=4965.910769033364 * 750 / 360) # nom. α = 750deg according to P. Zijl
u_inv = RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_et = u_te234 * u_ref * u_te234^2 * u_ref * u_te234 # 2 refocusing pulses after the RO
u_td = [exp(hamiltonian_linear(0, B1, ω0, TD - 2TE - TRF_inv / 2, m0s, R1f, R2f, Rx, R1s, 1)) * u_et for _ ∈ TI]
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_ti[i] * u_sp * u_inv * u_sp * u_td[i] * u_sp
s[i] = abs(steady_state(U)[1])
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = abs.(p[1] .* (1 .- p[2] .* exp.(-p[3] * t)))
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 0.735) # s; median of WM ROIs; reported T1 = (748 ± 64)ms in the splenium of the CC and (699 ± 38)ms in WM
push!(T1_functions, calculate_T1_IRLu)
push!(seq_name, "IR Lu et al.")
push!(seq_type, :IR)
LL: Stikhov et al.
Look-Locker method described by Stikhov et al. (2015).
function calculate_T1_LLStikhov(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TR = 1.55 # s
TI = [30e-3, 530e-3, 1.03, 1.53] # s
TRF_inv = 720e-6 # s; for 180deg pulse, 90deg pulse are half as long
# simulate signal with an MT model
u_90 = MRIgeneralizedBloch.xs_destructor(nothing) * RF_pulse_propagator(π / TRF_inv, B1, ω0, TRF_inv / 2, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=true)
u_inv = MRIgeneralizedBloch.xs_destructor(nothing) * RF_pulse_propagator(π / TRF_inv, B1, ω0, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_m90 = MRIgeneralizedBloch.xs_destructor(nothing) * RF_pulse_propagator(π / TRF_inv, B1, ω0, TRF_inv / 2, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_rotp = MRIgeneralizedBloch.z_rotation_propagator(π/2, nothing)
u_rotm = MRIgeneralizedBloch.z_rotation_propagator(-π/2, nothing)
u_inv = u_rotp * u_m90 * u_rotm * u_inv * u_rotp * u_90 # 90-180-90 pattern confirmed by authors
TRF_inv *= 2
α_exc = 5 * π / 180 # rad
nLobes = 7 # confirmed by authors
TRF_exc = 2.56e-3 # s; confirmed by authors
ω1 = sinc_pulse(α_exc, TRF_exc; nLobes=nLobes)
u_exc = RF_pulse_propagator(ω1, B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
dTI = TI .- [0; TI[1:end-1]]
dTI[1] -= (TRF_inv + TRF_exc) / 2
dTI[2:end] .-= TRF_exc
u_ir = [exp(hamiltonian_linear(0, B1, ω0, dTI[i], m0s, R1f, R2f, Rx, R1s, 1)) for i in eachindex(dTI)]
u_fp = exp(hamiltonian_linear(0, B1, ω0, TR - TI[end] - (TRF_inv + TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1))
U = I
for i in eachindex(TI)
U = u_exc * u_ir[i] * U
end
U = u_inv * u_fp * U
m = steady_state(U)
s = similar(TI)
for i in eachindex(TI)
m = u_exc * u_ir[i] * m
s[i] = m[1]
end
# fit mono-expential model and return T1 (in s)
# model as provided by Stikhov et al. in a private communication
function model_num(t, p)
any(t .!= TI) ? error() : nothing
cα_exc = cos(α_exc)
TI1 = TI[1]
TI2 = TI[2] - TI[1]
Nll = length(TI)
tr = TR - TI1 - (Nll - 1) .* TI2 # time between last exc and inv pulse
E1 = exp.(-TI1 ./ p[2])
E2 = exp.(-TI2 ./ p[2])
Er = exp.(-tr ./ p[2])
F = (1 - E2) ./ (1 - cα_exc .* E2)
Qnom = -F .* cα_exc .* Er .* E1 .* (1 .- (cα_exc .* E2) .^ (Nll - 1)) .- E1 .* (1 .- Er) .- E1 .+ 1
Qdenom = 1 .+ cα_exc .* Er .* E1 .* (cα_exc .* E2) .^ (Nll - 1)
Q = Qnom / Qdenom
Mz = zeros(Nll)
Msig = zeros(Nll)
for ii = 1:Nll
Mz[ii] = F .+ (cα_exc .* E2) .^ (ii - 1) .* (Q - F)
Msig[ii] = p[1] .* sin(α_exc) .* Mz[ii]
end
return Msig
end
fit = curve_fit(model_num, TI, s, [1.0, 1.0])
return fit.param[end]
end
push!(T1_literature, 0.750) # s; peak of histogram; cf. https://doi.org/10.1016/j.mri.2016.08.021
push!(T1_functions, calculate_T1_LLStikhov)
push!(seq_name, "LL Stikhov et al.")
push!(seq_type, :LL)
vFA: Stikhov et al.
Variable flip-angle method described by Stikhov et al. (2015).
function calculate_T1_vFAStikhov(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
α = [3, 10, 20, 30] * π / 180 # rad
TR = 15e-3 # s
TRF = 2e-3 # s; confirmed by authors
nLobes = 9 # confirmed by authors
# simulate signal with an MT model
s = similar(α)
for i in eachindex(α)
u_exc = RF_pulse_propagator(sinc_pulse(α[i], TRF; nLobes=nLobes), B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_fp = exp(hamiltonian_linear(0, B1, ω0, TR - TRF, m0s, R1f, R2f, Rx, R1s, 1))
U = u_exc * u_sp * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
f = lm(@formula(Y ~ X), DataFrame(X=s ./ tan.(α), Y=s ./ sin.(α)))
T1_est = -TR / log(f.model.pp.beta0[2])
return T1_est
end
push!(T1_literature, 1.07) # s; peak of histogram (cf. https://doi.org/10.1016/j.mri.2016.08.021)
push!(T1_functions, calculate_T1_vFAStikhov)
push!(seq_name, "vFA Stikhov et al.")
push!(seq_type, :vFA)
vFA: Cheng et al.
Variable flip-angle method described by Cheng et al. (2006).
function calculate_T1_vFACheng(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
α = [2, 9, 19] * π / 180 # rad
TR = 6.1e-3 # s
TRF = 1e-3 # s; guessed
nLobes = 3 # guessed
# simulate signal with an MT model
s = similar(α)
for i in eachindex(α)
u_exc = RF_pulse_propagator(sinc_pulse(α[i], TRF; nLobes=nLobes), B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_fp = exp(hamiltonian_linear(0, B1, ω0, TR - TRF, m0s, R1f, R2f, Rx, R1s, 1))
U = u_exc * u_sp * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
f = lm(@formula(Y ~ X), DataFrame(X=s ./ tan.(α), Y=s ./ sin.(α)))
T1_est = -TR / log(f.model.pp.beta0[2])
return T1_est
end
push!(T1_literature, 1.0855) # s; mean of two volunteers
push!(T1_functions, calculate_T1_vFACheng)
push!(seq_name, "vFA Cheng et al.")
push!(seq_type, :vFA)
vFA: Chavez & Stanisz
Variable flip-angle method described by Chavez & Stanisz (2012).
function calculate_T1_vFA_Chavez(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
α = [1, 40, 130, 150] * π / 180 # rad
TR = 40e-3 # s
# simulate signal with an MT model
s = similar(α)
for i in eachindex(α)
TRF = α[i] / (π/0.5e-3) # s; guessed, incl. constant ω1 / variable TRF
u_exc = RF_pulse_propagator(α[i]/TRF, B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model) # rect. pulse shape guessed because "slab-select gradient [...] [is] turned off"
u_fp = exp(hamiltonian_linear(0, B1, ω0, TR - TRF, m0s, R1f, R2f, Rx, R1s, 1))
U = u_exc * u_sp * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
# NLLS fit as described in the paper
function vFA_signal(α, p)
S0, B1, T1 = p
E1 = exp(-TR / T1)
return S0 .* sin.(B1 .* α) .* (1 - E1) ./ (1 .- cos.(B1 .* α) .* E1)
end
fit_vFA = curve_fit(vFA_signal, α, s, ones(3))
return fit_vFA.param[end]
end
push!(T1_literature, 1.044) # s; median of corpus callosum ROIs
push!(T1_functions, calculate_T1_vFA_Chavez)
push!(seq_name, "vFA Chavez & Stanisz")
push!(seq_type, :vFA)
vFA: Preibisch et al.
Variable flip-angle method described by Preibisch et al. (2009).
function calculate_T1_vFAPreibisch(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
α = [4, 18] * π / 180 # rad
TR = 7.6e-3 # s
TRF = 0.2e-3 # s; confirmed by Dr. Deichmann
# simulate signal with an MT model
s = similar(α)
for i in eachindex(α)
u_exc = RF_pulse_propagator(α[i] / TRF, B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_fp = exp(hamiltonian_linear(0, B1, ω0, (TR - TRF) / 2, m0s, R1f, R2f, Rx, R1s, 1))
U = u_fp * u_exc * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
f = lm(@formula(Y ~ X), DataFrame(X=s .* α, Y=s ./ α))
T1_est = -2 * TR * f.model.pp.beta0[2]
return T1_est
end
push!(T1_literature, 0.940) # s; median of ROIs; mean = 0.951s
push!(T1_functions, calculate_T1_vFAPreibisch)
push!(seq_name, "vFA Preibisch et al.")
push!(seq_type, :vFA)
vFA - Hybrid FLASH-EPI: Preibisch et al.
Variable flip-angle method with a Hybrid FLASH-EPI readout described by Preibisch et al. (2009).
function calculate_T1_vFAPreibisch_HYB(m0s, R1f, R2f, Rx, R1s, T2s, α, TR)
# define sequence parameters
TRF = 0.2e-3 # s; confirmed by Dr. Deichmann
# simulate signal with an MT model
s = similar(α)
for i in eachindex(α)
u_exc = RF_pulse_propagator(α[i] / TRF, B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_fp = exp(hamiltonian_linear(0, B1, ω0, (TR - TRF) / 2, m0s, R1f, R2f, Rx, R1s, 1))
U = u_fp * u_exc * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
SL = (s[2]/sin(α[2]) - s[1]/sin(α[1])) / (s[2]/tan(α[2]) - s[1]/tan(α[1]))
T1_est = -TR / log(SL)
return T1_est
end
For this sequence, we simulate three different settings with different flip angles and repetition times:
push!(T1_literature, 0.955) # s
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFAPreibisch_HYB(m0s, R1f, R2f, Rx, R1s, T2s, [4, 22] .* π ./ 180, 12.5e-3))
push!(seq_name, "vFA HYB12.5ms Preibisch et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.949) # s
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFAPreibisch_HYB(m0s, R1f, R2f, Rx, R1s, T2s, [4, 24] .* π ./ 180, 15.2e-3))
push!(seq_name, "vFA HYB15.2ms Preibisch et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.959) # s
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFAPreibisch_HYB(m0s, R1f, R2f, Rx, R1s, T2s, [4, 25] .* π ./ 180, 15.9e-3))
push!(seq_name, "vFA HYB15.9ms Preibisch et al.")
push!(seq_type, :vFA)
vFA: Teixeira et al.
Variable flip-angle method described by Teixeira et al. (2019).
function calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, ω1rms)
# define sequence parameters
α = [6, 12, 18] * π / 180 # rad – provided Dr. Teixeira
TR = 15e-3 # s; provided by Dr. Teixeira for Fig. 7
TRF = 3e-3 # s; confirmed by Dr. Teixeira
ω0_CSMT = 6e3 * 2π # 6kHz – confirmed by Dr. Teixeira
# simulate signal with an MT model
s = similar(α)
Threads.@threads for i in eachindex(α)
u_exc = RF_pulse_propagator(CSMT_pulse(α[i], TRF, TR, ω1rms, ω0=ω0_CSMT), B1, ω0, TRF, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_fp = exp(hamiltonian_linear(0, B1, ω0, (TR - TRF) / 2, m0s, R1f, R2f, Rx, R1s, 1))
U = u_fp * u_exc * u_fp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
f = lm(@formula(Y ~ X), DataFrame(X=s ./ tan.(α), Y=s ./ sin.(α))) # DESPOT1 confirmed by Dr. Teixeira
T1_est = -TR / log(f.model.pp.beta0[2])
return T1_est
end
For this sequence, we simulate five different B₁-RMS values:
push!(T1_literature, 0.825) # s; read from Fig. 7
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, 0.4e-6 * 267.522e6)) # rad/s
push!(seq_name, "vFA CSMT w/ B1rms = 0.4uT Teixeira et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.775) # s; read from Fig. 7
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, 0.8e-6 * 267.522e6)) # rad/s
push!(seq_name, "vFA CSMT w/ B1rms = 0.8uT Teixeira et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.73) # s; read from Fig. 7
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, 1.2e-6 * 267.522e6)) # rad/s
push!(seq_name, "vFA CSMT w/ B1rms = 1.2uT Teixeira et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.68) # s; read from Fig. 7
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, 1.6e-6 * 267.522e6)) # rad/s
push!(seq_name, "vFA CSMT w/ B1rms = 1.6uT Teixeira et al.")
push!(seq_type, :vFA)
push!(T1_literature, 0.64) # s; read from Fig. 7
push!(T1_functions, (m0s, R1f, R2f, Rx, R1s, T2s) -> calculate_T1_vFATeixeira(m0s, R1f, R2f, Rx, R1s, T2s, 2e-6 * 267.522e6)) # rad/s
push!(seq_name, "vFA CSMT w/ B1rms = 2uT Teixeira et al.")
push!(seq_type, :vFA)
MP₂RAGE: Marques et al.
MP₂RAGE method described by Marques et al. (2010).
function calculate_T1_MP2RAGE(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
α = [4, 5] .* π / 180 # rad
TRl = 6.75 # s
TR_FLASH = 7.9e-3 # s
TI = [0.8, 3.2] # s
Nz = 160 ÷ 3
# simulate signal with an MT model
# adiabatic inversion pulse
ω1, _, φ, TRF_inv = sechn_inversion_pulse(n=8, ω₁ᵐᵃˣ=25e-6 * 267.522e6) # HS8 pulse confirmed by Dr. Marques; amplitude chosen close to the max. of a typical 3T system
u_inv = u_sp * RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model) * u_sp
ta = TI[1] - Nz / 2 * TR_FLASH - TRF_inv / 2
tb = TI[2] - TI[1] - Nz * TR_FLASH
tc = TRl - TI[2] - Nz / 2 * TR_FLASH - TRF_inv / 2
u_ta = exp(hamiltonian_linear(0, B1, ω0, ta, m0s, R1f, R2f, Rx, R1s, 1))
u_tb = exp(hamiltonian_linear(0, B1, ω0, tb, m0s, R1f, R2f, Rx, R1s, 1))
u_tc = exp(hamiltonian_linear(0, B1, ω0, tc, m0s, R1f, R2f, Rx, R1s, 1))
# excitation blocks
# binomial water excitation pulses; 1-2-1 pulse scheme confirmed for the Siemens product sequence; not specifically for the prototype.
TRF_bin = 0.2e-3 # s; guessed, but has little influence the estimated T1
τ = 1 / (2 * 430) - TRF_bin # s; fat-water shift = 440Hz
TRF_exc = 2τ + 3TRF_bin # s
u_1 = RF_pulse_propagator(α[1] / 4 / TRF_bin, B1, ω0, TRF_bin, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_2 = RF_pulse_propagator(2α[1] / 4 / TRF_bin, B1, ω0, TRF_bin, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_t = exp(hamiltonian_linear(0, B1, ω0, τ, m0s, R1f, R2f, Rx, R1s, 1))
u_exc1 = u_1 * u_t * u_2 * u_t * u_1
u_1 = RF_pulse_propagator(α[2] / 4 / TRF_bin, B1, ω0, TRF_bin, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_2 = RF_pulse_propagator(2α[2] / 4 / TRF_bin, B1, ω0, TRF_bin, m0s, R1f, R2f, Rx, R1s, T2s, MT_model, spoiler=false)
u_t = exp(hamiltonian_linear(0, B1, ω0, τ, m0s, R1f, R2f, Rx, R1s, 1))
u_exc2 = u_1 * u_t * u_2 * u_t * u_1
u_te = exp(hamiltonian_linear(0, B1, ω0, (TR_FLASH - TRF_exc) / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc1 = u_te * u_exc1 * u_sp * u_te
u_exc2 = u_te * u_exc2 * u_sp * u_te
# Propagation matrix in temporal order:
# U = u_tc * u_exc2^Nz * u_tb * u_exc1^Nz * u_ta * u_inv
U1 = u_exc1^(Nz / 2) * u_ta * u_inv * u_tc * u_exc2^Nz * u_tb * u_exc1^(Nz / 2)
U2 = u_exc2^(Nz / 2) * u_tb * u_exc1^Nz * u_ta * u_inv * u_tc * u_exc2^(Nz / 2)
s1 = steady_state(U1)[1]
s2 = steady_state(U2)[1]
sm = s1' * s2 / (abs(s1)^2 + abs(s2)^2)
# fit mono-expential model and return T1 (in s)
function MP2RAGE_signal(T1)
eff_inv = 0.96 # from paper
E1 = exp(-TR_FLASH / T1)
EA = exp(-ta / T1)
EB = exp(-tb / T1)
EC = exp(-tc / T1)
mzss = (((((1 - EA) * (cos(α[1]) * E1)^Nz + (1 - E1) * (1 - (cos(α[1]) * E1)^Nz) / (1 - cos(α[1]) * E1)) * EB + (1 - EB)) * (cos(α[2]) * E1)^Nz + (1 - E1) * (1 - (cos(α[2]) * E1)^Nz) / (1 - cos(α[2]) * E1)) * EC + (1 - EC)) / (1 + eff_inv * (cos(α[1]) * cos(α[2]))^Nz * exp(-TRl / T1))
s1 = sin(α[1]) * ((-eff_inv * mzss * EA + (1 - EA)) * (cos(α[1]) * E1)^(Nz / 2 - 1) + (1 - E1) * (1 - (cos(α[1]) * E1)^(Nz / 2 - 1)) / (1 - cos(α[1]) * E1))
s2 = sin(α[2]) * ((mzss - (1 - EC)) / (EC * (cos(α[2]) * E1)^(Nz / 2)) - (1 - E1) * ((cos(α[2]) * E1)^(-Nz / 2) - 1) / (1 - cos(α[2]) * E1))
sm = s1' * s2 / (abs(s1)^2 + abs(s2)^2)
return sm
end
fit = curve_fit((_, T1) -> MP2RAGE_signal.(T1), [1], [sm], [0.5])
return fit.param[1]
end
push!(T1_literature, 0.81) # ± 0.03 s
push!(T1_functions, calculate_T1_MP2RAGE)
push!(seq_name, "MP2RAGE Marques et al.")
push!(seq_type, :MP2RAGE)
MP-RAGE: Wright et al.
MP-RAGE method described by Wright et al. (2008).
function calculate_T1_MPRAGE_Wright(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRl = 5 # s
TR_FLASH = 11e-3 # s
TE = 6.7e-3 # s
TI = [160, 190, 285, 441, 680, 1050, 1619, 2100] .* 1e-3 # s
Nz = 256
# simulate signal with an MT model
# adiabatic inversion pulse
TRF_inv = 13.5e-3 # s; from the paper
β = 600 # 1/s; picked for 10kHz bandwidth
μ = 5 # rad – 50 rad would match 10 kHz bandwidth, 5 rad chosen for computation speed (makes little difference)
ω₁ᵐᵃˣ = 4 * sqrt(μ) * β # rad/s; compromise of appromximating 1.25 >> 1 and keeping B1max in limits
ω1, _, φ, TRF_inv = sech_inversion_pulse(TRF=TRF_inv, β=β, μ=μ, ω₁ᵐᵃˣ=ω₁ᵐᵃˣ) # standard Philips inverson pulse, likely hyperbolic secant, as confirmed by Dr. Gowland
u_inv = u_sp * RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# excitation blocks
α = (8/20:8/20:8) .* π / 180 # rad – pattern confirmed by Dr. Gowland
TRF_exc = 0.67e-3 # s
nLobes = 7 # sinc pulses confirmed by Dr. Gowland; number of lobes guessed guessed to approximate the 11.9kHz bandwidth discussed in the paper
u_exc = [RF_pulse_propagator(sinc_pulse(α[i], TRF_exc; nLobes=nLobes), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model) for i in eachindex(α)]
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_tr = exp(hamiltonian_linear(0, B1, ω0, TR_FLASH - TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = [u_te * u_exc[i] * u_tr for i in eachindex(u_exc)]
u_exc_ramp = prod(u_exc[end:-1:1])
s = similar(TI)
for iTI in eachindex(TI)
ti = TI[iTI] - TRF_inv / 2 - (TR_FLASH - TE) - length(α) * TR_FLASH
tc = TRl - TI[iTI] - Nz * TR_FLASH - TRF_inv / 2 - TE + length(α) * TR_FLASH
u_ti = exp(hamiltonian_linear(0, B1, ω0, ti, m0s, R1f, R2f, Rx, R1s, 1))
u_tc = exp(hamiltonian_linear(0, B1, ω0, tc, m0s, R1f, R2f, Rx, R1s, 1))
# Propagation matrix in temporal order: U = u_tc * u_exc20^(Nz-20) * ... u_exc2 * u_exc1 * u_ti * u_inv
U = u_exc_ramp * u_ti * u_inv * u_tc * u_exc[end]^(Nz - length(α))
s[iTI] = steady_state(U)[1] # extract x-magnetization
end
# fit mono-expential model and return T1 (in s)
function MPRAGE_mz(TI, p)
T1, M0, α_inv = p
function hamiltonian_T1(T, R1)
H = @SMatrix [
-R1 R1;
0 0]
return H * T
end
function pulse_propgator(α)
U = @SMatrix [
cos(α) 0;
0 1]
return U
end
function steady_state_2D(U)
Q = U - @SMatrix [1 0; 0 0]
m = Q \ @SVector [0,1]
return m
end
s = similar(TI)
for iTI in eachindex(TI)
ti = TI[iTI] - length(α) * TR_FLASH
tc = TRl - TI[iTI] - Nz * TR_FLASH + length(α) * TR_FLASH
u_ti = exp(hamiltonian_T1(ti, 1/T1))
u_tr = exp(hamiltonian_T1(TR_FLASH, 1/T1))
u_tc = exp(hamiltonian_T1(tc, 1/T1))
# Propagation matrix in temporal order: U = u_tc * u_exc20^(Nz-20) * ... u_exc2 * u_exc1 * u_ta * u_inv
U = u_tr * pulse_propgator(α[end])
for i in (length(α)-1):-1:1
U = U * u_tr * pulse_propgator(α[i])
end
U = U * u_ti * pulse_propgator(α_inv) * u_tc * (u_tr * pulse_propgator(α[end]))^(Nz - length(α))
s[iTI] = M0 * steady_state_2D(U)[1] # extract z-magnetization
end
return s
end
fit = curve_fit(MPRAGE_mz, TI, s, [1, sin(α[end]), 0.9π])
return fit.param[1]
end
push!(T1_literature, 0.84) # s
push!(T1_functions, calculate_T1_MPRAGE_Wright)
push!(seq_name, "MPRAGE Wright et al.")
push!(seq_type, :MP2RAGE)
Adiabatic IR: Wright et al.
Inversion-recovery method with adiabatic inversion pulse described by Wright et al. (2008).
function calculate_T1_IR_EPI_Wright(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TI = [120, 200, 400, 600, 900, 1500, 2100, 3000, 4000] .* 1e-3 # s
TR = 35 # s
TE = 45e-3 # s
TRF_exc = 7.7e-3 # s
nLobes = 1 # chose to match 395 Hz bandwidth
# simulate signal with an MT model
# adiabatic inversion pulse
TRF_inv = 17.51e-3 # s
β = 500 # 1/s; chosen to fit 713Hz bandwidth
μ = 5 # rad – chosen to fit 713Hz bandwidth
ω₁ᵐᵃˣ = 2 * sqrt(μ) * β # rad/s; compromise of appromximating 2 >> 1 and keeping B1max in limits
ω1, _, φ, TRF_inv = sech_inversion_pulse(TRF=TRF_inv, β=β, μ=μ, ω₁ᵐᵃˣ=ω₁ᵐᵃˣ)
u_inv = u_sp * RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI - TRF_inv/2 - TRF_exc/2, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_td = [exp(hamiltonian_linear(0, B1, ω0, TR - TRF_inv/2 - iTI - TE , m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
# excitation block
u_exc = RF_pulse_propagator(sinc_pulse(π / 2, TRF_exc; nLobes=nLobes), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te * u_exc
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_ti[i] * u_sp * u_inv * u_sp * u_td[i] * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .* (1 .- p[2] .* exp.(-p[3] * t)) # p[2] = (1 - cos(α))
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 0.9) # s; read from Fig. 5
push!(T1_functions, calculate_T1_IR_EPI_Wright)
push!(seq_name, "IR EPI Wright et al.")
push!(seq_type, :IR)
Adiabatic IR: Reynolds et al.
Inversion-recovery method with adiabatic inversion pulse described by Reynolds et al. (2023).
function calculate_T1_IRReynolds_adiabatic(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRF_exc = 1e-3 # s; guessed
nLobes = 3 # s; guessed
TI = [5.5, 10.2, 35.8, 66.9, 125, 234, 598, 818, 1118, 1529, 3910, 5348] .* 1e-3 # s; measured from end to beginning of respective pulse (confirmed by Dr. Reynolds)
TD = 5 # s
TE = 10e-3 # s; guessed, but has negligible impact
# simulate signal with an MT model
# adiabatic inversion pulse
ω1, _, φ, TRF_inv = sech_inversion_pulse(TRF=10e-3, ω₁ᵐᵃˣ=13.5e-6 * 267.522e6, μ=1.8380981750265004, β=730)
u_inv = RF_pulse_propagator(ω1, B1, φ, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_td = exp(hamiltonian_linear(0, B1, ω0, TD - TE, m0s, R1f, R2f, Rx, R1s, 1))
# excitation block
u_exc = RF_pulse_propagator(sinc_pulse(π / 2, TRF_exc; nLobes=nLobes), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te * u_exc
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_ti[i] * u_sp * u_inv * u_sp * u_td * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .* (1 .- p[2] .* exp.(-p[3] * t)) # confirmed by Dr. Reynolds
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 0.905) # s
push!(T1_functions, calculate_T1_IRReynolds_adiabatic)
push!(seq_name, "IR ad. Reynolds et al.")
push!(seq_type, :IR)
Sinc IR: Reynolds et al.
Inversion-recovery method with a sinc inversion pulse described by Reynolds et al. (2023).
function calculate_T1_IRReynolds_sinc(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRF_exc = 1e-3 # s; guessed
nLobes_exc = 3 # s; guessed
TI = [5.5, 10.2, 35.8, 66.9, 125, 234, 598, 818, 1118, 1529, 3910, 5348] .* 1e-3 # s; measured from end to beginning of respective pulse (confirmed by Dr. Reynolds)
TD = 5 # s
TE = 10e-3 # s; guessed, but has negligible impact
# simulate signal with an MT model
# excitation block
u_exc = RF_pulse_propagator(sinc_pulse(π / 2, TRF_exc; nLobes=nLobes_exc), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te * u_exc
# sinc inversion pulse
TRF_inv = 3e-3 # s
nLobes_inv = 3
u_inv = RF_pulse_propagator(sinc_pulse(π, TRF_inv; nLobes=nLobes_inv), B1, ω0, TRF_inv, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_td = exp(hamiltonian_linear(0, B1, ω0, TD - TE, m0s, R1f, R2f, Rx, R1s, 1))
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_sp * u_ti[i] * u_sp * u_inv * u_sp * u_td * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .* (1 .- p[2] .* exp.(-p[3] * t)) # confirmed by Rd. Reynolds
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 0.861) # s
push!(T1_functions, calculate_T1_IRReynolds_sinc)
push!(seq_name, "IR sinc Reynolds et al.")
push!(seq_type, :IR)
SR: Reynolds et al.
Saturation recovery method described by Reynolds et al. (2023).
function calculate_T1_SRReynolds(m0s, R1f, R2f, Rx, R1s, T2s)
# define sequence parameters
TRF_exc = 1e-3 # s; guessed, but has negligible impact
nLobes_exc = 5 # guessed, but has negligible impact
TI = [5.5, 10.2, 35.8, 66.9, 125, 234, 598, 818, 1118, 1529, 3910, 5348] .* 1e-3 # s; measured from end to beginning of respective pulse (confirmed by Dr. Reynolds)
TD = 5 # s
TE = 10e-3 # s; guessed, but has negligible impact
# simulate signal with an MT model
# saturation pulse
TRF_sat = 0.5 # s
ω1 = 10 * 2π # rad/s
u_sat = RF_pulse_propagator(ω1, B1, ω0, TRF_sat, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
# relaxation blocks
u_ti = [exp(hamiltonian_linear(0, B1, ω0, iTI, m0s, R1f, R2f, Rx, R1s, 1)) for iTI ∈ TI]
u_td = exp(hamiltonian_linear(0, B1, ω0, TD - TE, m0s, R1f, R2f, Rx, R1s, 1))
# excitation block
u_exc = RF_pulse_propagator(sinc_pulse(π / 2, TRF_exc; nLobes=nLobes_exc), B1, ω0, TRF_exc, m0s, R1f, R2f, Rx, R1s, T2s, MT_model)
u_te = exp(hamiltonian_linear(0, B1, ω0, TE - TRF_exc / 2, m0s, R1f, R2f, Rx, R1s, 1))
u_exc = u_te * u_exc
s = similar(TI)
for i in eachindex(TI)
U = u_exc * u_ti[i] * u_sp * u_sat * u_td * u_sp
s[i] = steady_state(U)[1]
end
# fit mono-expential model and return T1 (in s)
model3(t, p) = p[1] .* (1 .- p[2] .* exp.(-p[3] * t)) # confirmed by Dr. Reynolds
fit = curve_fit(model3, TI, s, [1, 2, 0.8])
return 1 / fit.param[end]
end
push!(T1_literature, 1.013) # s
push!(T1_functions, calculate_T1_SRReynolds)
push!(seq_name, "SR Reynolds et al.")
push!(seq_type, :SR)