Linear Approximation
The following code demonstrates the linear approximation of the generalized Bloch model and replicates Figs. 7 and 8 in the paper.
For this analysis we need the following packages:
using DifferentialEquations
using BenchmarkTools
using LinearAlgebra
using MRIgeneralizedBloch
using Plots
and we simulate a coupled spin system with the following parameters:
m₀ˢ = 0.1
m₀ᶠ = 1-m₀ˢ
R₁ = 1 # 1/s
R₂ᶠ = 1 / 50e-3 # 1/s
Rₓ = 70; # 1/s
Linearized $T_2^{s,l}$
We demonstrate the linear approximation at the example of the Green's function corresponding to the super-Lorentzian lineshape, which we interpolate to improve the performance:
G = interpolate_greens_function(greens_superlorentzian, 0, 1e-3 / 5e-6);
The function precompute_R2sl
returns another function, R₂ˢˡ(Tʳᶠ, α, B1, T₂ˢ)
, that interpolates the linearized relaxation rate, as well as functions that describe its derivatives wrt. $T_2^s$ and $B_1$, respectively:
R₂ˢˡ, ∂R₂ˢˡ∂T₂ˢ, ∂R₂ˢˡ∂B₁ = precompute_R2sl(TRF_min=5, TRF_max=100, T2s_min=1, T2s_max=1, ω1_max=π/5, B1_max=1, greens=G);
The derivatives are not used here and are just assigned for demonstration purposes.
In order to replicate Fig. 7, we plot R₂ˢˡ(Tʳᶠ, α, B₁, T₂ˢ)
for a varying $α$ and $T_\text{RF}/T_2^s$:
α = (0.01:.01:1) * π
TʳᶠoT₂ˢ = 5:100
TʳᶠoT₂ˢ_m = repeat(reshape(TʳᶠoT₂ˢ, 1, :), length(α), 1)
α_m = repeat(α, 1, size(TʳᶠoT₂ˢ_m, 2))
p = plot(xlabel="Tʳᶠ/T₂ˢ", ylabel="α/π", colorbar_title="T₂ˢˡ/T₂ˢ")
contour!(p, TʳᶠoT₂ˢ, α ./ π, 1 ./ R₂ˢˡ.(TʳᶠoT₂ˢ_m, α_m, 1, 1), fill = true)
Spin Dynamics during a single RF Pulse
To replicate Fig. 8a, we simulate and plot the dynamics of a coupled spin system during a single π-pulse, starting from thermal equilibrium.
Tʳᶠ = 100e-6 # s
T₂ˢ = 10e-6 # μs
m0_5D = [0,0,m₀ᶠ,m₀ˢ,1]
mfun(p, t; idxs=nothing) = typeof(idxs) <: Number ? 0 : m0_5D; # initialize history function, here with the ability to just call a single index
The full generalized Bloch model is solved by
param = (π/Tʳᶠ, 1, 0, m₀ˢ, R₁, R₂ᶠ, Rₓ, R₁, T₂ˢ, G)
prob = DDEProblem(apply_hamiltonian_gbloch!, m0_5D, mfun, (0.0, Tʳᶠ), param)
sol_pi_full = solve(prob);
and we evaluate the interpolated solution at the following time points:
t = (0:.01:1) * Tʳᶠ # s
Mpi_full = zeros(length(t),4)
for i in eachindex(t)
Mpi_full[i,:] = sol_pi_full(t[i])[1:4]
end
Further, we calculate the linear approximation, which is simulated in a 6D-space as it explicitly models $x^s$:
m0_6D = [0,0,m₀ᶠ,0,m₀ˢ,1]
Mpi_appx = similar(Mpi_full)
for i in eachindex(t)
H = exp(hamiltonian_linear(π/Tʳᶠ, 1, 0, t[i], m₀ˢ, R₁, Rₓ, R₁, R₂ᶠ, R₂ˢˡ(Tʳᶠ, π, 1, T₂ˢ)))
Mpi_appx[i,:] = (H * m0_6D)[[1:3;5]]
end
and plot the original generalized Bloch model and its linear approximation for comparison:
p = plot(xlabel="t [s]", ylabel="m/m₀")
plot!(p, t, Mpi_full[:,1] / m₀ᶠ, label="xᶠ/m₀ᶠ original model")
plot!(p, t, Mpi_appx[:,1] / m₀ᶠ, label="xᶠ/m₀ᶠ linear approximation")
plot!(p, t, Mpi_full[:,3] / m₀ᶠ, label="zᶠ/m₀ᶠ original model")
plot!(p, t, Mpi_appx[:,3] / m₀ᶠ, label="zᶠ/m₀ᶠ linear approximation")
plot!(p, t, Mpi_full[:,4] / m₀ˢ, label="zˢ/m₀ˢ original model")
plot!(p, t, Mpi_appx[:,4] / m₀ˢ, label="zˢ/m₀ˢ linear approximation")
We observe slight deviations of zˢ during the pulse, but a virtually perfect match at the end of the RF pulse.
RF Pulses with Different Flip Angles
To replicate Fig. 8b, we simulate the spin dynamics during multiple RF pulses with different flip angles α, each simulation starting from thermal equilibrium, and analyze the magnetization at the end of each pulse:
α = (.01:.01:1) * π
M_full = zeros(length(α), 4)
M_appx = similar(M_full)
for i in eachindex(α)
param = (α[i]/Tʳᶠ, 1, 0, m₀ˢ, R₁, R₂ᶠ, Rₓ, R₁, T₂ˢ, G)
prob = DDEProblem(apply_hamiltonian_gbloch!, m0_5D, mfun, (0.0, Tʳᶠ), param)
M_full[i,:] = solve(prob)[end][1:4]
u = exp(hamiltonian_linear(α[i]/Tʳᶠ, 1, 0, Tʳᶠ, m₀ˢ, R₁, R₂ᶠ, Rₓ, R₁, R₂ˢˡ(Tʳᶠ, α[i], 1, T₂ˢ))) * m0_6D
M_appx[i,:] = u[[1:3;5]]
end
p = plot(xlabel="α/π", ylabel="m/m₀")
plot!(p, α/π, M_appx[:,1] / m₀ᶠ, label="xᶠ/m₀ˢ original model")
plot!(p, α/π, M_full[:,1] / m₀ᶠ, label="xᶠ/m₀ˢ linear approximation")
plot!(p, α/π, M_appx[:,3] / m₀ᶠ, label="zᶠ/m₀ˢ original model")
plot!(p, α/π, M_full[:,3] / m₀ᶠ, label="zᶠ/m₀ˢ linear approximation")
plot!(p, α/π, M_appx[:,4] / m₀ˢ, label="zˢ/m₀ˢ original model")
plot!(p, α/π, M_full[:,4] / m₀ˢ, label="zˢ/m₀ˢ linear approximation")
Visually, the linear approximation matches the full simulation well. The normalized root-mean-squared error of the linear approximation for $x^f$ is
norm(M_appx[:,1] .- M_full[:,1]) / norm(M_full[:,1])
1.4430065667744892e-5
for $z^f$ it is
norm(M_appx[:,3] .- M_full[:,3]) / norm(M_full[:,3])
6.22634317813194e-6
and for $z^s$ it is
norm(M_appx[:,4] .- M_full[:,4]) / norm(M_full[:,4])
8.219762180324472e-5
which confirms the good concordance.
Benchmark
We analyze the execution time for solving the full integro-differential equation:
param = (α[end]/Tʳᶠ, 1, 0, m₀ˢ, R₁, R₂ᶠ, Rₓ, R₁, T₂ˢ, G)
prob = DDEProblem(apply_hamiltonian_gbloch!, m0_5D, mfun, (0.0, Tʳᶠ), param)
@benchmark solve($prob)
BenchmarkTools.Trial: 79 samples with 1 evaluation.
Range (min … max): 43.824 ms … 120.780 ms ┊ GC (min … max): 0.00% … 56.73%
Time (median): 47.353 ms ┊ GC (median): 0.00%
Time (mean ± σ): 63.839 ms ± 23.025 ms ┊ GC (mean ± σ): 27.26% ± 24.66%
█
▆▅█▄▁▁▁▁▁▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▄▅▄▄▄▄▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂ ▁
43.8 ms Histogram: frequency by time 117 ms <
Memory estimate: 54.80 MiB, allocs estimate: 140936.
The $
symbol interpolates the variable, which improves the accuracy of the timing measurement. We can compare this time to the time it takes to calculate the linear approximation, including the time it takes to evaluate the interpolated R₂ˢˡ
:
@benchmark exp(hamiltonian_linear($(α[end]/Tʳᶠ), 1, 0, $Tʳᶠ, $m₀ˢ, $R₁, $R₂ᶠ, $Rₓ, $R₁, R₂ˢˡ($Tʳᶠ, $α[end], 1, $T₂ˢ))) * $m0_6D
BenchmarkTools.Trial: 10000 samples with 8 evaluations.
Range (min … max): 3.151 μs … 17.510 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 3.421 μs ┊ GC (median): 0.00%
Time (mean ± σ): 3.496 μs ± 463.757 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▆▁
▂▃▄█████▅▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▁▁▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
3.15 μs Histogram: frequency by time 6.14 μs <
Memory estimate: 800 bytes, allocs estimate: 11.
We can see that linear approximation is about 4 orders of magnitude faster compared to the full model.
This page was generated using Literate.jl.